ITMO
en/ en

ISSN: 1023-5086

en/

ISSN: 1023-5086

Научно-технический

Оптический журнал

Полнотекстовый перевод журнала на английский язык издаётся Optica Publishing Group под названием “Journal of Optical Technology“

Подача статьи Подать статью
Больше информации Назад

DOI: 10.17586/1023-5086-2020-87-08-21-40

УДК: 543.42, 617.713-007.64,617.713-089

Фотофизические аспекты кросслинкинга роговицы. Проблемы и перспективы (обзор)

Ссылка для цитирования:

Серебряков В.А., Бойко Э.В., Маслов В.Г., Мелихова М.В., Папаян Г.В. Фотофизические аспекты кросслинкинга роговицы. Проблемы и перспективы (обзор) // Оптический журнал. 2020. Т. 87. № 8. С. 21–40. http://doi.org/10.17586/1023-5086-2020-87-08-21-40

 

Serebryakov V.A., Boiko E.V., Maslov V.G., Melikhova M.V., Papayan G.V. Photophysical aspects of corneal cross-linking: problems and prospects (Review) [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 8. P. 21–40. http://doi.org/10.17586/1023-5086-2020-87-08-21-40

 

Ссылка на англоязычную версию:

V. A. Serebryakov, E. V. Boiko, V. G. Maslov, M. V. Melikhova, and G. V. Papayan, "Photophysical aspects of corneal cross-linking: problems and prospects (Review)," Journal of Optical Technology. 87(8), 465-478 (2020).  https://doi.org/10.1364/JOT.87.000465

Аннотация:

В обзоре рассмотрены различные аспекты кросс-линкинга роговицы, преимущественно, с точки зрения протекающих в нём фотофизических процессов, включая сравнение с фотодинамической терапией. Это позволило провести более глубокий анализ процессов кросс-линкинга, оценить проблемы и указать пути повышения эффективности и сокращения длительности процедуры лечения.

Ключевые слова:

кросс-линкинг, рибофлавин, коллаген, протеогликан, фотодинамическая терапия, субстрат клетки, внеклеточный матрикс

Коды OCIS: 170.4470, 170.5180, 340.7460

Список источников:

 1.    Wollensak G., Spoerl E., Seiler T. Riboflavin/ultraviolet-A–induced collagen crosslinking for the treatment of keratoconus // Am J Ophthalmol. 2003. V. 135(5). Р. 620–627.  

 2.   ASCRS Cornea Clinical Committee. Reshaping procedures for the surgical management of corneal ectasia // Cataract Refract Surg. 2015. V. 41. Р. 842–872.

3.   Kling S., Hafezi F. An algorithm to predict the biomechanical stiffening effect in corneal cross-linking // Refract Surg. 2017. V. 33(2). Р. 128–136.

4.   Insinska-Rak M., Sikorski M. Riboflavin interactions with oxygen — a survey from the photochemical perspective // Chem. Eur. J. 2014. V. 20. P. 1–13.

5.   Gatinel D., MacGregor C., Jawad M. Re-evaluating the effectiveness of corneal collagen cross-linking and its true biomechanical effect in human eyes // Controversies in the Management of Keratoconus / Ed. by Barbara A. Springer Nature Switzerland AG, 2019. Р. 167–177.

6.   Quantock A.J., Young R.D. Development of the l stroma, and the collagen–proteoglycan associations that help define its structure and function // Developmental Dynamics. 2008. V. 237. P. 2607–2621. https://anatomypubs.onlinelibrary.wiley.com/doi/10.1002/dvdy.21579

7.    Holmes D.F., Gilpin C.J., Baldock C., Ziese U., Koster A.J., Kadler K.E. Corneal collagen fibril structure in three dimensions: Structural insights into fibril assembly, mechanical properties, and tissue organization // PNAS. 2001. V. 98(13). Р. 7307–7312.

8.   Radner W., Zehetmayer M., Aufreiter R., Mallinger R. Interlacing and cross-angle distribution of collagen lamellae in the human cornea // Cornea. 1998. V. 17(5). Р. 537–543.

9.   Hayes S., Kamma-Lorger C., Boote C., Young R.D., Quantock A.J., Rost A., Khatib Y., Harris J., Yagi N., Terrill N., Meek M. The effect of riboflavin/UVA collagen cross-linking therapy on the structure and hydrodynamic behaviour of the ungulate and rabbit corneal stroma // PLoS One. 2013. V. 8(1). e52860. Р. 1–12.

10. Dos Santos A.F., de Almeida D.R.Q., Terra L.F., Baptista M.S., Labriola L. Photodynamic therapy in cancer treatment — an update review // J Cancer Metastasis Treat. 2019. V. 5(25). Р. 1–20.

11.  Bacellarl O.L., Tsubone T.M., Pavan C., Baptista M.S. Photodynamic efficiency: from molecular photochemistry to cell death // Int. J. Mol. Sci. 2015. V. 16. Р. 20523–20559.

12.  Plaetzer K., Krammer B., Berlanda J., Berr F., KiesslichT. Photophysics and photochemistry of photodynamic therapy: fundamental aspects // Lasers Med. Sci. 2009. V. 24. P. 259–268.

13.  Kim M.M., Ghogare A.A., Greer A., Zhu T.C. On the in vivo photochemical rate parameters for PDT reactive oxygen species modeling // Phys. Med. Biol. 2017. V. 62. P. R1–R48.

14.  Uzdensky A.B. The biophysical aspects of photodynamic therapy // Biophysics. 2016. V. 61(3). Р. 461–469.

15.  Shen H.-R., Spikes J.D., Kopeсekovа P., Kopeсek J. Photodynamic crosslinking of proteins. I. Model studies using histidine- and lysine-containing N- (2-hydroxypropyl) methacrylamide copolymers // J Photochemistry and Photobiology B 1996. Biology 34, Р. 203–210.

16.  Brummer G., Littlechild S., McCall S., Zhang Y., Conrad G.W. The role of non-enzymatic glycation and carbonyls in collagen cross-linking for the treatment of keratoconus // IOVS. 2011. V. 52(9). Р. 6363–6369.

17.  McKay T.B., Priyadarsini S., Karamichos D. Mechanisms of collagen crosslinking in diabetes and keratoconus // Cells. 2019. V. 8(1239). Р. 1–29.

18. Alarcon E.I., Poblete H., Roh H.G., Couture J.-F., Comer J., Kochevar I.E. Rose bengal binding to collagen and tissue photobonding // ACS Omega. 2017. V. 2. P. 6646–6657.

19.  Кудинова Н.В., Березов Т.Т. Фотодинамическая терапия опухолей: иммунологический аспект лечения // Российский биотерапевтический журнал. 2010. Т. 9(1). С. 69–76.

20. Bacilli I.O.L., Baptista M.S. Mechanisms of photosensitized lipid oxidation and membrane permeabilization // ACS Omega. 2019. V. 4. Р. 21636–21646.

21.  Yankovsky I. Evaluation of photodynamic activity of chlorine-type phtosensitizers with b-cyclodextrinsnanovectors // Thesis. Human health and pathology. Université de Lorraine; Belarussian State University, 2016.

22. Finlay J.C., Mitra S., Patterson M.S., Foster T.H. Photobleaching kinetics of photofrin in vivo and in multicelltumour spheroids indicate two simultaneous bleaching mechanisms // Phys. Med. Biol. 2004. V. 49. Р. 482737–4860.

23. Pratavieira S., Santos P.L.A., Menezes P.F.C., Kurachi C., Sibata C.H., Jarvi M.T., Wilson B.C., Bagnato V.S. Phototransformation of hematoporphyrin in aqueous solution: anomalous behavior at low oxygen concentration // Laser Physics. 2009. V. 19(6). Р. 1263–1271.

24. Dysart J.S., Patterson M.S. Characterization of photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro // Phys. Med. Biol. 2005. V. 50. Р. 297–2616.

25. Carreau A., El Hafny-Rahbi B., Matejuk A., Grillon C., Kieda C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia // J. Cell. Mol. Med. 2011. V. 15(6). Р. 1239–1253.

26. Baier J., Maisch T., Maier M., Engel E., Landthaler M., Baumler W. Singlet oxygen generation by UVA light exposure of endogenous photosensitizers // Biophysical Journal. 2006. V. 91. Р. 1452–1459.

27. Redmond R.W., Kochevar I.E. Medical applications of rose bengal- and riboflavin-photosensitized protein crosslinking // Photochemistry and Photobiology. 2019. https://doi.org/10.1111/php.13126

28. Jarvi M.T., Patterson M.S., Wilson B.C. Insights into photodynamic therapy dosimetry: simultaneous singlet oxygen luminescence and photosensitizer photobleaching measurements // Biophysical Journal. 2012. V. 102(3). Р. 661–671. (https://www.cell.com/cms/10.1016/j.bpj.2011.12.043/attachment/a8350dd8-55e4-42b6-9bdc-34412b577c29/mmc1.pdf. Supplemental Material)

29. Nomoto K., Yagi M., Hamada U., Naito J., Yonei Y. Identification of advanced glycation endproducts derived fluorescence spectrum in vitro and human skin anti-Aging // Anti-Aging Medicine. 2013. V. 10(5). Р. 9–100.

30. Beisswenger P.J., Howell S., Mackenzie T., Corstjens H., Muizzuddin N., Matsui M.S. Two fluorescent wavelengths, 440ex/520em nm and 370ex/440em nm, reflect advanced glycation and oxidation end products in human skin without diabetes // Diabetes Technology & Therapeutics. 2012. V. 14(3). Р. 285–292.

31.  Mrochen M., McQuaid R., Lemanski N., Pajic B. Biomechanics of the eye // Kugter Publications, Amsterdam, The Netherlands. 2018. Р. 233–244.

32. Маркова Е.Ю., Костенёв С.В., Григорьева А.Г., Перфильева E.A. Современные тенденции в лечении кератоконуса у детей. Обзор литературы // Офтальмология. 2017. Т. 14(3). С. 188–194.

33. Бикбов М.М., Халимов А.Р., Усубов Э.Л. Ультрафиолетовый кросс-линкинг роговицы // Вестник РАМН. 2016. Т. 71(3). С. 224–232.

34. Andreanos K.D., Hashemi K., Petrelli M., Droutsas K., Georgalas I., Kymionis G.D. Keratoconus treatment algorithm // Ophthalmol Ther. 2017. V. 6(2). Р. 245–262.

35. Sachdev G.S., Sachdev М. Recent advances in corneal collagen cross-linking // Indian J Ophthalmol. 2017. V. 65(9). Р. 787–796.

36. Gore D.M., Margineanu A., French P., O’Brart D., Dunsby C., Allan B.D. Two-photon fluorescence microscopy of corneal riboflavin absorption // IOVS. 2014. V. 55(4). Р. 2476–2481.

37. Schumacher S., Mrochen M., Wernli J., Bueeler M., Seiler T. Optimization model for UV-riboflavin corneal cross-linking // IOVS. 2012. V. 53(2). Р. 762–769.

38. O’Brart N.A.L., O’Brart D.P.S., Aldahlawi N.H., Hayes S., Meek K.M. An investigation of the effects of riboflavin concentration on the efficacy of corneal cross-linking using an enzymatic resistance model in porcine corneas // IOVS. 2018. V. 59. Р. 1058–1065.

39. Lin J.-T. Resolving the controversial Issues and optimalnew protocols for accelerated corneal cross-linking (CXL) // Med Surg Ophthal Res. 2018. V. 2(3). Р. 1–6.

40. Kamaev P., Friedman M.D., Sherr E., Muller D. Photochemical kinetics of corneal cross-linking with riboflavin // IOVS. 2012. V. 53(4). Р. 2360–2367.

41.  Lin J.-T. A critical review on the kinetics, efficacy, safety, nonlinear law and optimal protocols of corneal crosslinking // Ophthalmol Vis Neurosci. 2018. V. 3(1). Р. 017-1–10.

42. Criado S., García N.A. Vitamin B2-sensitised photooxidation of the ophthalmic drugs Timolol and Pindolol: kinetics and mechanism // Redox Report. 2004. V. 9(5). P. 291–297.

43. Raskup F., Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. I. Principles // Ocular Surface. 2013. V. 11(2). Р. 65–74.

44. McCall A.S., Kraft S., Edelhauser H.F., Kidder G.W., Lundquist R.R., Bradshaw H.E., Dedeic Z., Dionne M.J., Clement E.M., Conrad G.W. Mechanisms of corneal tissue cross-linking in response to treatment with topical riboflavin and long-wavelength ultraviolet radiation (UVA) // IOVS. 2010. V. 51. P. 129–138.

45. Hayes S., White T., Boote C., Kamma-Lorger C.S., Bell J., Sorenson T., Terrill N., Shebanova O., Meek K.M. The structural response of the cornea to changes in stromal hydration // J. R. Soc. Interface. 2017. V. 14. 0062. Р. 1–9.

46. Meek K.M., Hayes S. Corneal crosslinking — a review // Ophthalmic Physiol Opt. 2013. V. 33. P. 78–93.

47. Beránek M., Nováková D., Rozsíval P., Drsata J., Palicka V. Glycation and advanced glycation end-products in laboratory experiments in vivo and in vitro // Actamedica (Hradec Kralove). 2006. V. 49(1). P. 35–39.

48. Chirila T., ‎Harkin D.(еds.) Biomaterials and regenerative medicine in Ophthalmlogy // Woodhead Publishing Series in Biomaterials Book. 2016. Р. 159–160.

49. Zholobko O., Tarnavchyk I., Voronov A., Budishevska O., Kohut A., Vornov S. Covalent bond formation in the reaction of glucosamine as monomer unit of chitosan macromolecules and poly(ethylene glycol) disuccinate at elevated temperature // J. Chitin Chitosan Sci. 2014. V. 2. Р. 299–305.

50. Wollensak G., Wilsch M., Spoerl E., Seiler T. Collagen fiber diameter in the rabbit cornea after collagen crosslinking by riboflavin/UVA // Cornea. 2004. V. 23(5). Р. 503–507.

51.  Spoerl E., Terai N., Raiskup F., Pillunat L. Amylase reduces the biomechanical stiffness of the cornea // IOVS. 2012. V. 53(14). Р. 1531.

52. Kao W.W.-Y., Liu C.-Y. Roles of lumican and keratocan on corneal transparency // Glycoconjugate. 2003. V. 19. Р. 275–285.

53. Raspanti M., Viola M., Forlino A., Tenni R., Gruppi C., Tira M.E. Glycosaminoglycans show a specific periodic interaction with type I collagen fibrils // Structural Biology. 2008. V. 1164. Р. 134–139.

54. Scott J.E. Proteoglycan: collagen interactions and corneal ultrastructure // Biochemical Society transactions. 1991. V. 19. Р. 877–54881.

55. Cheng X., Pinsky P.M. Mechanisms of self-organization for the collagen fibril lattice in the human cornea // J R Soc Interface. 2013. V. 10. 0512. Р. 1–18.

56. Ionita G., Matei I. Application of riboflavin photochemical properties in hydrogel synthesis // Intech Open. 2019. Р. 1–14.

57. Lombardo M., Lombardo G., Carbone G., De Santo M.P., Barberi R., Serrao S. Biomechanics of the anterior human corneal tissue investigated with atomic force microscopy // IOVS. 2012. V. 53(2). Р. 1050–1057.

58. Mrochen M., Lemanski N., Cheng M. Laser and light in Ophthalmology // Encyclopedia of Modern Optics II. 2018. V. 5. Р. 130–139.

59. Steinberg J., Frings A., Mousli A. et al. New scheimpflug dynamic in vivo curve analyses to characterize biomechanical changes of the cornea after cross-linking for progressive keratoconus // Refract Surg. 2016. V. 32. Р. 34–39.

60. Mazzotta C., Baiocchi S., Caporossi T., Caragiuli S., Paradiso A.L., Caporossi A. Riboflavin 0.1% (VibeX) for the treatment of keratoconus // Expert Opinion on Orphan Drugs. 2013. V. 1(3). Р. 235–240.

61.  Bouheraoua N., Jouve L., Borderie V., Laroche L. Three different protocols of corneal collagen crosslinking in keratoconus: conventional, accelerated and iontophoresis // J. Vis. Exp. 2015. V. 105. e5311955. Р. 1–12.

62. Raiskup F., Theuring A., Pillunat L.E., Spoerl E. Corneal collagen crosslinking with riboflavin and ultraviolet-A light in progressive keratoconus: ten-year results // Cataract Refract Surg. 2015. V. 41. Р. 41–46.

63. O’Brart D.P., Patel P., Lascaratos G. Corneal cross-linking to halt the progression of keratoconus and corneal ectasia: sevenyear follow-up // Am J Ophtlamol. 2015. V. 160. Р. 1154–1163.

64. Mastropasqua L. Collagen cross-linking: when and how? A review of the state of the art of the technique and new perspectives // Eye Vis. 2015. V. 2(19). Р. 2–10.

65. Vastardis I., Pajic-Eggspuehler B., Nichorlis C., Mueller J., Pajic B. Recent innovations in collagen corneal cross-linking; a mini review // The Open Ophthalmology. 2017. V. 11. Р. 217–224.

66. Bunsen R., Roscoe H. III Photochemical researches. Part V. On the measurement of the chemical action of direct and diffuse sunlight // Proc R Soc Lond. 1862. V. 12. P. 306–312.

67. Mazzotta C., Traversi C., Baiocchi S., Caporossi O., Bovone C., Sparano M. C., Balestrazzi A., Caporossi A. Corneal healing after riboflavin ultraviolet-A collagen cross-linking determined by confocal laser scanning microscopy in vivo: early and late modifications // Am J Ophthalmol. 2008. V. 146(4). Р. 527–5.

68. Schilde T., Kohlhaas M., Spoerl E., Pillunat L.E. Enzymatic evidence of the depth dependence of stiffening on riboflavin/UVA treated corneas // German]. Ophthalmologe. 2008. V. 105. Р. 165–169.

69. Jiang W., Qiu S.‑Y. Conventional vs. pulsed‑light accelerated corneal collagen cross‑linking for the IANG L treatment of progressive keratoconus: 12‑month results from a prospective study // Experimental and therapeutic medicine. 2017. V. 14. Р. 4238–4244.

70. Ng A.L., Chan T.C., Cheng A.C. Conventional versus accelerated corneal collagen cross-linking in the treatment of keratoconus // Clin Exp Ophthalmol. 2016. V. 44. Р. 8–14.

71.  Wen D., Li Q., Song B., Tu R., Wang Q., O’Brart D.P.S., McAlinden C., Huang J. Comparison of standard versus accelerated corneal collagen cross-linking for keratoconus: A meta-analysis // IOVS. 2018. V. 59(10). Р. 3920–3930.

72. SukhorukovV. Photochemolysis sensitized by psoralen: reciprocity law is not fulfilled // Photochem Photobiol. 1991. V. 54. Р. 375–379.

73. Leccisotti A., Islam T. Transepithelial corneal collagen crosslinking in keratoconus // Refract Surg. 2010. V. 26. Р. 942–948.

74. Bikbova G., Bikbov M. Standard corneal collagen crosslinking versus trans-epithelial iontophoresis-assisted corneal crosslinking, 24 months follow-up: randomized control trial // Acta Ophthalmol. 2016. V. 94. Р. e600–e606.

75. Madeira C., Vasques A., Beato J., Godinho G., Torrão L., Falcão M., Falcão-Reis F., Pinheiro-Costa J. Transepithelial accelerated versus conventional corneal collagen crosslinking in patients with keratoconus: a comparative study // Clinical Ophthalmology. 2019. V. 13. Р. 445–452.

76. Ihanamaki T., Pelliniemib L.J., Vuorioc E. Collagens and collagen-related matrix components in the human and mouse eye // Progress in Retinal and Eye Research. 2004. V. 23. Р. 403–434.

77.  Nada H., Aldahlawi A.H., Hayes S., O’Brart D.P.S., Meek K.M. Standard versus accelerated riboflavin/ultraviolet corneal cross-linking: resistance against enzymatic digestion // Cataract Refract Surg. 2015. V. 41. Р. 1989–1996.

78. Kymionis G.D., Grentzelos M.A., Kankariya V.P., Liakopoulos D.A., Portaliou D.M., Tsoulnaras K.I., Karavitaki A.E., Pallikaris A.I. Safety of high-intensity corneal collagen crosslinking // Cataract Refract Surg. 2014. V. 40. Р. 1337–1340.

79. Semchishen A., Mrochen M., Semchishen V. Model for optimization the UV-A / Riboflavin Strengthening (cross-linking) of the cornea: percolation threshold // Photochem Photobiol. 2015. V. 91(6). Р. 1403–1411.

80. Caruso C., Epstein R.L., Ostacolo C., Pacente L., Troisi S., Barbaro G. Customized corneal cross-linking-a mathematical model // Cornea. 2017. V. 36(5). Р. 600–604.

81. Wertheimer C.M., Elhardt C., Kaminsky S.M., Pham L., Pei Q., Mendes B., Afshar S., Kochevar I.E. Enhancing rose bengal-photosensitized protein crosslinking in the cornea // IOVS. 2019. V. 60(6). Р. 1845–1852.

82. Lin J.-T. Kinetics of enhancement for corneal cross-linking: proposed model for a two-initiator system // Intern J Ophthalmol Res. 2019. V. 10(3). OR.49970. Р. 1–6.

83. Lin J.-T. Analytic formulas for the clinical issues of a UV-light-activated corneal crosslinking device // Biomed Eng Med Devic. 2016. V. 1(1). 104. Р. 1–8.

84. Дроздова Г.А., Бикбов М.М., Халимов А.Р., Казакбаева Г.М., Харитонов С.В., Халимов Т.А. Новые медицинские изделия в фототерапии заболеваний роговицы // Вестник РУДН, серия Медицина. 2015. № 1. С. 94–101.

85. O’Brart D.P.S., O’Brart N.A.L., Aldahlawi N.H., Meek K.M. The author response: role of riboflavin concentration and oxygen in the efficacy and depth of corneal crosslinking // IOVS. 2018. V. 59. Р. 4451–4452.

86. Aldahlawi N.H., Hayes S., O’Brart D.P.S., Akhbanbetova A., Littlechild S.L., Meek K.M. Enzymatic resistance of corneas crosslinked using riboflavin in conjunction with low energy, high energy, and pulsed UVA irradiation modes // IOVS. 2016. V. 57. Р. 1547–1552.

87. 87 Kling S., Richoz O., Hammer A., Tabibian D., Jacob S., Agarwal A., Hafezi F. Increased biomechanical efficacy of corneal cross-linking in thin corneas due to higher oxygen availability // Refract Surg. 2015. V. 31(12). Р. 840–846.

88. Seiler T.G., Batista A., Frueh B.E., Koeni K. Riboflavin concentrations at the endothelium during corneal cross-linking in humans // IOVS. 2019. V. 60(6). Р. 2140–2146.

89. Halili F., Arboleda A., Durkee H., Taneja M., Miller D., Alawa K.A., Aguilar M.C., Amescua G., Flynn Jr. H.W., Parel J.-M. Rose bengal and riboflavin mediated photodynamic therapy to inhibit methicillin-resistant Staphylococcus aureus keratitis isolates // Am J Ophthalmol. 2016. V. 166. P. 194–202.

90. Sinjab M.M., Cummings A.B. (eds). Corneal collagen cross-linking. Switzerland: Springer Intern. Publishing. 2017. 296 p.

91.  Pricea M.O., Price Jr.F.W. Corneal cross-linking in the treatment of corneal ulcers // Curr Opin Ophthalmol. 2016. V. 27(3). Р. 250.

92. 92 Martinez J.D., Arboleda A., Naranjoa A., Aguilar M.C., Durkee H., Monsalve P., Dubovya S.R., Donaldson K.E., Miller D., Amescua G., Parela J.-M. Long-term outcomes of riboflavin photodynamic antimicrobial therapy as a treatment for infectious keratitis // Am J Ophthalmol Case Reports. 2019. V. 15. P. 100481–4.

93. Park C.Y., Chuck R.S. Riboflavin-UVA collagen cross-linking for the treatment of acanthamoeba keratitis // Ann Eye Sci. 2019. V. 4(7). Р. 1–6.

94. Mooren P., Gobin L., Bostan N., Wouters K., Zakaria N., Mathysen D.G., Koppen C. Evaluation of UVA cytotoxicity for human endothelium in an ex vivo corneal cross-linking experimental setting // Refract Surg. 2016. V. 32(1). Р. 4–46.

95. Whitcup S.M., Azar D.T. (eds.) Pharmacologic therapy of ocular disease // Handbook of Experimental Pharmacology. Springer Intern. Publishing Switzerland. 2016. V. 242. Р. 153–154.

96. Singh M., Li J., Han Z., Vantipalli S., Liu C-H., Wu C., Raghunathan R., Aglyamov S.R., Twa M.D., Larin K.V. Evaluating the effects of riboflavin/UV-A and rose-bengal/green light cross-linking of the rabbit cornea by noncontact optical coherence elastography // IOVS. 2016. V. 57. Р. OCT112–OCT120.

97. Kobashi H., Rong S.S. Corneal collagen cross-linking for keratoconus: systematic review // Bio Med Research Intern. 2017. Article ID 8145651. Р. 1–7.

98.      Abrahamse H., Hamblin M.R. New photosensitizers for photodynamic therapy // Biochem. J. 2016. V. 473. P. 347–364.