ITMO
en/ en

ISSN: 1023-5086

en/

ISSN: 1023-5086

Научно-технический

Оптический журнал

Полнотекстовый перевод журнала на английский язык издаётся Optica Publishing Group под названием “Journal of Optical Technology“

Подача статьи Подать статью
Больше информации Назад

DOI: 10.17586/1023-5086-2021-88-05-23-35

УДК: 535, 681.7

Модулятор Маха–Цендера, использующий дисперсию в плазме носителей заряда в суженном фотонно-кристаллическом волноводе

Ссылка для цитирования:

Yuchen Hu, Heming Chen, Tong Xiang Mach–Zehnder modulator based on tapered waveguide and carrier plasma dispersion in photonic crystal (Модулятор Маха–Цендера, использующий дисперсию в плазме носителей заряда в суженном фотонно-кристаллическом волноводе) [на англ. яз.] // Оптический журнал. 2021. Т. 88. № 5. С. 23–35. http://doi.org/10.17586/1023-5086-2021-88-05-23-35

 

Yuchen Hu, Heming Chen, Tong Xiang Mach–Zehnder modulator based on tapered waveguide and carrier plasma dispersion in photonic crystal (Модулятор Маха–Цендера, использующий дисперсию в плазме носителей заряда в суженном фотонно-кристаллическом волноводе) [in English] // Opticheskii Zhurnal. 2021. V. 88. № 5. P. 23–35. http://doi.org/10.17586/1023-5086-2021-88-05-23-35

Ссылка на англоязычную версию:

Y. C. Hu, H. M. Chen, and T. Xiang, "Mach–Zehnder modulator based on a tapered waveguide and carrier plasma dispersion in photonic crystal," Journal of Optical Technology. 88(5), 242-251 (2021). https://doi.org/10.1364/JOT.88.000242

Аннотация:

Запрос на высокоскоростные интегрированные коммуникационные системы велик, поэтому создание широкополосных и обладающих малыми потерями электрооптических модуляторов является необходимостью. Предложен модулятор на основе интерферометра Маха–Цендера, использующего фотонный кристалл. Для подавления потерь на отражение на углах сконструирован и оптимизирован изогнутый фотонно-кристаллический волновод. Параметры модулятора определены с использованием трехмерного метода конечных разностей во временной области. Численное моделирование показало, что вносимые потери и коэффициент подавления на рабочей длине волны 1550 нм составляют соответственно 0,22 и 15,2 дБ. Полоса пропускания по уровню 3 дБ может достигать 72 ГГц. Имея преимущество малого размера (47,8×11,6×0,22 мкм), разработанный модулятор может быть использован в оптических интегральных системах.

Ключевые слова:

фотонные кристаллы, модуляторы, многомодовая интерференционная связь, оптика

Благодарность:

Работа выполнена при поддержке Национального фонда естественных наук Китая (гранты №№ 61571237 и 61077084), Национального научного фонда провинции Цзянсу, Китай (грант № BK20151509) и Программ исследований и инноваций колледжей и университетов провинции Цзянсу (грант № KYCX18_0843).

Коды OCIS: 130.3120, 130.5296, 130.4110

Список источников:

1. Reed G.T., Mashanovich G., Gardes F.Y., et al. Silicon optical modulators // Nat. Photonics. 2010. V. 4. P. 518–526.
2. Bahrami H., Sepehrian H., Park C.S., et al. Time-domain large-signal modeling of traveling-wave modulators on SOI // J. Lightwave Technol. 2016. V. 34. P. 2812–2823.
3. Qi N., Xiao X., Hu S., et al. Co-design and demonstration of a 25-Gb/s silicon-photonic Mach–Zehnder modulator with a CMOS-based high-swing driver // IEEE J. Sel. Top. Quantum Electron. 2016. V. 22. P. 131–140.
4. Zhou Y.Y., Zhou L.J., Zhu H.K., et al. Modeling and optimization of a single-drive push-pull silicon Mach–Zehnder modulator // Photonics Res. 2016. V. 4. P. 153–161.
5. Sato H., Miura H., Qiu F., et al. Low driving voltage 5. Mach–Zehnder interference modulator constructed from an electro-optic polymer on ultra-thin silicon with a broadband operation // Opt. Exp. 2017. V. 25. P. 768–775.
6. Hinakura Y., Terada Y., Tamura T., et al. Wide spectral characteristics of Si photonic crystal Mach–Zehnder modulator fabricated by complementary metal-oxide-semiconductor process // Photonics Res. 2016. V. 3. P. 17.
7. Nguyen H.C., Yazawa N., Hashimoto S., et al. Sub-100 μm photonic crystal Si optical modulators: Spectral, athermal, and high-speed performance // IEEE J. Sel. Top. Quantum Electron. 2013. V. 19. P. 127–137.
8. Notomi M., Yamada K., Shinya A., et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs // Phys. Rev. Lett. 2001. V. 87. P. 253902.
9. Terada Y., Ito H., Nguyen H.C., et al. Theoretical and experimental investigation of low-voltage and low-loss 25-Gbps Si photonic crystal slow light Mach–Zehnder modulators with interleaved p/n junction // Front Phys. 2014. V. 2. P. 61.
10. Terada Y., Kondo K., Abe R., et al. Full C-band Si photonic crystal waveguide modulator // Opt. Lett. 2017. V. 42. P. 5110–5112.
11. Terada Y., Tatebe T., Hinakura Y., et al. Si photonic crystal slow-light modulators with periodic p-n junctions // J. Lightwave Technol. 2017. V. 35. P. 1684–1692.
12. Baba T., Nguyen H.C., Yazawa N., et al. Slow-light Mach–Zehnder modulators based on Si photonic crystals // Sci. Technol. Adv. Mater. 2014. V. 15. P. 024602.
13. Stárek R., Miková M., Straka I., et al. Experimental realization of SWAP operation on hyper-encoded qubits // Opt. Exp. 2018. V. 26. P. 8443–8452.

14. Lalanne P., Talneau A. Modal conversion with artificial materials for photonic-crystal waveguides // Opt. Exp. 2002. V. 10. P. 354–359.
15. Khoo E.H., Liu A.Q., Zhang X.M., et al. Exact step-coupling theory for mode-coupling behavior in geometrical variation photonic crystal waveguides // Phys. Rev. B. 2009. V. 80 P. 035101.
16. Talneau A., Agio M., Soukoulis C.M., et al. High-bandwidth transmission of an efficient photonic-crystal mode converter // Opt. Lett. 2004. V. 29. P. 1745–1747.
17. Hu Y.C., Chen H.M., Zhou T.H. Mach–Zehnder modulator based on photonic crystal and nanowire waveguide // J. Infrared Millimeter Waves. 2019. V. 38. P. 499–507.
18. Tucker R.S., Ku P.C., Chang-Hasnain C.J. Slow-light optical buffers: Capabilities and fundamental limitations // J. Lightwave Technol. 2005. V. 23. P. 4046–4066.
19. Khurgin J.B. Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: Comparative analysis // JOSA B. 2005. V. 22. P. 1062–1074.
20. Miller D.A.B. Fundamental limit to linear one-dimensional slow light structures // Phys. Rev. Lett. 2007. V. 99. P. 203903.
21. Soref R.A., Bennett B.R. Electrooptical effects in silicon // IEEE J. Quantum Electron. 1987. V. 23. P. 123–129.
22. Yu T.B., Jiang X.Q., Yang J.Y., et al. Self-imaging effect of TM modes in photonic crystal multimode waveguides only exhibiting band gaps for TE modes // Phys. Lett. A. 2007. V. 369. P. 167–171.
23. Qi B., Ping Y., Li Y., et al. Ultracompact electrooptic silicon modulator with horizontal photonic crystal slotted slab // IEEE Photonics Technol. Lett. 2010. V. 22. P. 724–726.
24. Lavrinenko A., Borel P., et al. Comprehensive FDTD modelling of photonic crystal waveguide components // Opt. Exp. 2004. V. 12(2). P. 234–48.
25. Sorace-Agaskar C., Leu J., Watts M.R., et al. Electro-optical co-simulation for integrated CMOS photonic circuits with VerilogA // Opt. Exp. 2015. V. 23(21). P. 27180.
26. Eldhose P., Arun Th., Anuj D., et al. Active microring based tunable optical power splitters // Opt. Commun. 2016. V. 359. P. 311–315.
27. Hendrickson J., Soref R., Sweet J., et al. Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation // Opt. Exp. 2014. V. 22(3). P. 3271.
28. Mcguire D., Liu A. Modeling active silicon photonics components // Integrated Photonics Research. Silicon & Nanophotonics. 2013. OSA Technical Digest (online). P. IM2B.2.
29. Arjmand A., Mcguire D. Complete optoelectronic simulation of patterned silicon solar cells // Internat. Conf. Numerical Simulation of Optoelectronic Devices. IEEE, 2014.
30. Hendrickson J.R., Richard S., Ricky G. Improved 2×2 Mach–Zehnder switching using coupled-resonator photonic-crystal nanobeams // Opt. Lett. 2018. V. 43(2). P. 287.
31. Bendib S., Zegadi A. Improved sensitivity of 2D photonic crystal Mach–Zehnder interferometer-based pressure sensor // Plasmonics. 2018. V. 13(3). DOI: 10.1007/s11468-017-0525-1.
32. Nikoufard M., Amadeh S. InP-based photonic crystal electro-optic modulator // Optik – Internat. J. Light and Electron Optics. 2015. V. 126(19). P. 2219–2222.
33. Rao S., Casalino M., Coppola G., et al. Design of amorphous silicon photonic crystal-based M–Z modulator operating at 1.55 μm // Internat. Conf. Photonics. IEEE, 2016.
34. Jain S., Rajput S., Kaushik V., et al. High speed optical modulator based on silicon slotted-rib waveguide // Opt. Commun. 2019. V. 434. P. 49–53.
35. Hinakura Y., Terada Y., Arai H., et al. Electro-optic phase matching in a Si photonic crystal slow light modulator using meander-line electrodes // Opt. Exp. 2018. V. 26(9). P. 11538.