ITMO
en/ en

ISSN: 1023-5086

en/

ISSN: 1023-5086

Научно-технический

Оптический журнал

Полнотекстовый перевод журнала на английский язык издаётся Optica Publishing Group под названием “Journal of Optical Technology“

Подача статьи Подать статью
Больше информации Назад

DOI: 10.17586/1023-5086-2021-88-08-20-31

Исследование технологии создания фантомных изображений на основе мультиплексирования с ортогональным частотным разделением каналов

Ссылка для цитирования:

Ye Hualong, Zhang Leihong, Wang Kaimin, Zhang Dawei Study on the key technology of ghost imaging based on orthogonal frequency division multiplexing (Исследование технологии создания фантомных изображений на основе мультиплексирования с ортогональным частотным разделением каналов) [на англ. яз.] // Оптический журнал. 2021. Т. 88. № 8. С. 20–31. http://doi.org/10.17586/1023-5086-2021-88-08-20-31

 

Ye Hualong, Zhang Leihong, Wang Kaimin, Zhang Dawei Study on the key technology of ghost imaging based on orthogonal frequency division multiplexing (Исследование технологии создания фантомных изображений на основе мультиплексирования с ортогональным частотным разделением каналов) [in English] // Opticheskii Zhurnal. 2021. V. 88. № 8. P. 20–31. http://doi.org/10.17586/1023-5086-2021-88-08-20-31

Ссылка на англоязычную версию:

Hualong Ye, Leihong Zhang, Kaimin Wang, and Dawei Zhang, "Study on the key technology of ghost imaging based on orthogonal frequency division multiplexing," Journal of Optical Technology. 88(8), 420-428 (2021). https://doi.org/10.1364/JOT.88.000420

Аннотация:

Исследована технология создания и восстановления фантомных изображений с использованием принципа мультиплексирования с ортогональным частотным разделением. Рассмотренаи показана возможность повышения отношения сигнал/шум и помехоустойчивости системы фантомного изображения. Полученные результаты расширяют теоретический базис информационных коммуникаций.

Ключевые слова:

мультиплексирование с ортогональным частотным разделением, фантомное изображение, ортогональная матрица, восстановление информации

Коды OCIS: 330.0330

Список источников:

1. Klyshko D.N. Two-photon light: Influence of filtration and a new possible EPR experiment // Physics Letters A. 1998. V. 128(3). P. 133–137.
2. Shapiro J.H., Boyd R.W. The physics of ghost imaging // Quantum Information Processing. 2012. V. 11(4). P. 949–993.

3. Hardy N.D., Shapiro J.H. Computational ghost imaging versus imaging laser radar for three-dimensional imaging // Phys Rev. A. 2013. V. 87(2). P. 023820.
4. Hongchao Liu, Jun Xiong. Properties of high-order ghost imaging with natural light // J. Opt. Soc. Am. A. 2013. V. 30(5). P. 956–961.
5. Baoqing Sun, Stephen S. Welsh, Matthew P. Edgar, Jeffrey H. Shapiro, Miles J. Padgett. Normalized ghost imaging // Opt. Express. 2012. V. 20(15). P. 16892–16901.
6. Liu Z., Tan S., Wu J. et al. Spectral camera based on ghost imaging via sparsity constraints // Scientific Reports. 2016. № 6. P. 25718.
7. Yu Y., Wang C., Liu J. et al. Ghost imaging with different frequencies through non-degenerated four-wave mixing // Optics Express. 2016. V. 24(16). P. 18290.
8. Bennink R.S., Bentley S.J., Boyd R.W. et al. Quantum and classical coincidence imaging // Physical Review Letters. 2004. V. 92(3). P. 033601.
9. Shapiro J.H. Computational ghost imaging // Physical Review A. 2008. V. 78(6). P. 1–2.
10. Astola V.K.J. Compressive sensing computational ghost imaging // Journal of the Optical Society of America. A. Optics Image Science & Vision. 2012. V. 29(8). P. 1556–67.
11. Paniagua-Diaz A.M., Starshynov I., Fayard N. et al. Blind ghost imaging // arXiv preprint arXiv.1809.10501.
2018.
12. Weiliang Z., Wenwen Z., Ruiqing H. et al. Iterative denoising ghost imaging based on local Hadamard modulation // Acta Optica Sinica. 2016. V. 36(4). P. 0411001.
13. Fan X., Hu B., Li Z. et al. Real-time compression system research based on DMD Hadamard transform spectrometer // Procedia Engineering. 2010. N 7. P. 297–303.
14. Leihong Z., Xiao Y., Dawei Z. Research on ghost imaging based on laser projector and Hadamard matrix in classroom // Applied Laser. 2018. V. 5(38). P. 879–883.
15. Noshad M., Brandt-Pearce M. Hadamard coded modulation for visible light communications // IEEE Transactions on Communications. 2016. P. 1–1.
16. Zhang G., Xu J., Wu Q. et al. Wireless powered cooperative jamming for secure OFDM system // IEEE Transactions on Vehicular Technology. 2017. V. 99. P. 1–1.
17. Liu Y., Liao G., Xu J. et al. Adaptive OFDM integrated radar and communications waveform design based on information theory // IEEE Communications Letters. 2017. P. 1–1.
18. Shaoyang C., Li C., Weidong W. Design and experiments of an adaptive OFDM system for visible light communication // Journal of University of Chinese Academy of Sciences. 2018. V. 1(35). P. 137–143.
19. Liu K., Wang L., Liu Y. A new nonlinear companding algorithm based on tangent linearization processing for PAPR reduction in OFDM systems // China Communications. 2020. V. 17(8). P. 133–146.
20. Ragumadhavan R., Thenmoezhi N., Lakshmi A. et al. Multiple input and multiple output OFDM for visible light communication // Journal of Physics: Conference Series. 2021. V. 1717(1). P. 012065.
21. Fang T., Liu S., Ma L. et al. Subcarrier modulation identification of underwater acoustic OFDM channel based on block expectation maximization and likelihood // Applied Acoustics. 2021. V. 173. P. 107654.
22. Zhou Y.H., Tong F., Zhang G.Q. Distributed compressed sensing estimation of underwater acoustic OFDM channel // Applied Acoustics. 2017. V. 117. P. 160–166.
23. Diet A., Berland C., Villegas M. et al. EER architecture specifications for OFDM transmitter using a class E amplifier // IEEE Microwave and Wireless Components Letters. 2004. V. 14(8). P. 389391.
24. Sung M., Kang S., Shim J. et al. DFT-precoded coherent optical OFDM with hermitian symmetry for fiber nonlinearity mitigation // Journal of Lightwave Technology. 2012. V. 30(17). P. 2757–2763.
25. Yang S., Guo Z., Guo S. et al. Covet underwater acoustic communication based on spread spectrum orthogonal frequency division multiplexing (OFDM) // Acoustical Society of America Journal. 2017. V. 141(5). P. 3990–3990.
26. Qin L., Zhang Y., Song K. et al. Visible light communication system based on spread spectrum technology for intelligent transportation // Optical and Quantum Electronics. 2017. V. 49. P. 252.
27. Mu B., Jie Z. The applications, characteristics, working models and principle of Spread Spectrum Communication // Telecommunications For Electric Power System. 2002. V. 4. P. 36–39.
28. Farhang A., Rezazadehreyhani A., Doyle L.E. et al. Low complexity modem structure for OFDM-based orthogonal time frequency space modulation // IEEE Wireless Communications Letters. 2017. PP. 99. P. 1–1.
29. Lin B., Tang X., Ghassemlooy Z. et al. Efficient frequency-domain channel equalisation methods for OFDM visible light communications // IET Communications. 2017. V. 11(1). P. 25–29.
30. Anoh K., Tanriover C., Adebisi B. On the optimization of iterative clipping and filtering for PAPR reduction in OFDM systems // IEEE Access. 2017. P. 1–1.