ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-06-53-63

УДК: 53.088

Research on methods of regression analysis and nonlinear programming for calibrating a goniometer

For Russian citation (Opticheskii Zhurnal):

Королёв А.Н., Лукин А.Я., Венедиктов В.Ю., Иващенко Е.М. Исследование методов регрессионного анализа и нелинейного программирования в задачах калибровки на гониометре // Оптический журнал. 2022. Т. 89. № 6. С. 53–63. http://doi.org/10.17586/1023-5086-2022-89-06-53-63

 

Korolev A.N., Lukin A.Ya., Venediktov V.Yu., Ivashchenko E.M. Research on methods of regression analysis and nonlinear programming for calibrating a goniometer [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 6. P. 53–63. http://doi.org/10.17586/1023-5086-2022-89-06-53-63 

For citation (Journal of Optical Technology):

A. N. Korolev, A. Ya. Lukin, V. Yu. Venediktov, and E. M. Ivashchenko, "Research on methods of regression analysis and nonlinear programming for calibrating a goniometer," Journal of Optical Technology. 89(6), 346-352 (2022). https://doi.org/10.1364/JOT.89.000346

Abstract:

Subject of study. This study is devoted to solving the calibration problems of a goniometer built using a holographic angle sensor and an autocollimator. Method. Methods of regression analysis and nonlinear programming are studied in relation to the problems of calibration of a goniometer and determination of the systematic error of its angle sensor to introduce corrections in the measurement results. Main results. The methods of regression analysis and nonlinear programming are applied to the problem of goniometer calibration. It is shown that using regression analysis can reduce the error from to 0.15 to 0.01. The application of nonlinear programming makes it possible to determine the systematic error of the angle sensor included in the goniometer. In two cycles of measurements, the error is at the level of hundredths of an arc second. The possibility of using nonlinear programming for determining the angles of deviation of optical polygon faces from the nominal values is demonstrated. Practical significance. The application of regression analysis to the problem of calibration of a goniometer enables the error range to be reduced by more than an order of magnitude. The use of nonlinear programming simplifies the procedure for determining the systematic error of its angle sensor.

Keywords:

goniometer, calibration, angle measurement, regression analysis, nonlinear programming

Acknowledgements:

The research was supported by the grant of RFS No. 20-19-00412.

OCIS codes: 120.0120, 230.0230

References:

1. Inertech LLC, http://inertech-ltd.com/.
2. SKB IS incremental transducers of angular displacements, https://skbis.ru/products_pdf_2014/angle_increment.pdf.
3. T. Yandayan, R. Geckeler, A. Just, M. Krause, S. A. Akgoz, M. Aksulu, B. Grubert, and T. Watanabe, “Investigations of interpolation errors of angle encoders for high precision angle metrology,” Meas. Sci. Technol. 29, 064007 (2018).
4. M. Kinnane, L. Hudson, A. Henins, and M. Mendenhall, “A simple method for high-precision calibration of long-range errors in an angle encoder using an electronic nulling autocollimator,” Metrologia 52, 244–250 (2015).
5. M. Pisani and M. Astrua, “The new INRIM rotating encoder angle comparator (REAC),” Meas. Sci. Technol. 28, 045008 (2017).
6. Y. Xia, Z. Wu, and M. Huang, “An improved angle calibration method of a high-precision angle comparator,” Metrol. Meas. Syst. 28, 181–190 (2021).
7. A. N. Korolev, A. I. Gartsuev, G. S. Polishchuk, and V. P. Tregub, “A digital autocollimator,” J. Opt. Technol. 76(10), 624–628 (2009) [Opt. Zh. 76(10), 42–47 (2009)]
8. T. A. Andreeva, E. D. Bokhman, V. Yu. Venediktov, S. V. Gordeev, A. N. Korolev, M. A. Kos’mina, A. Ya. Lukin, and V. L. Shur, “Estimation of metrological characteristics of a high-precision digital autocollimator using an angle encoder,” J. Opt. Technol. 85(7), 406–409 (2018) [Opt. Zh. 85(7), 39–43 (2018)]
9. R. Probst, R. Wittekopf, M. Krause, H. Dangschat, and A. Ernst, “The new PTB angle comparator,” Meas. Sci. Technol. 9, 1059–1066 (1998).
10. P. Pavlov, “Aspects of the cross-calibration method in laser goniometry,” Meas. Tech. 58, 970–974 (2015).
11. P. A. Pavlov, “Technique for studying the error of a laser dynamic goniometer,” Meas. Tech. 2, 29–32 (2020).
12. T. Yandayan, A. S. Akgoz, and M. Asar, “Calibration of high-resolution electronic autocollimators with demanded low uncertainties using single reading head angle encoders,” Meas. Sci. Technol. 25, 015010 (2014).
13. T. Watanabe, H. Fujinoto, K. Nakayama, T. Masuda, and M. Kajitani, “Automatic high precision calibration system for angle encoder (II),” Proc. SPIE. 5190, 400–409 (2003).
14. T. Watanabe, H. Fujimoto, and T. Masuda, “Self-calibratable rotary encoder,” J. Phys.: Conf. Ser. 13, 240–245 (2005).
15. R. Geckeler and A. Just, “A shearing-based method for the simultaneous calibration of angle measuring devices,” Meas. Sci. Technol. 25, 105009 (2014).
16. K. V. Chekirda, V. L. Shur, M. A. Kosmina, G. I. Leibengardt, and A. Y. Lukin, “Measurement of the angles of polyhedral prisms on the primary standard of the unit of flat angle GET 22-2014,” Meas. Tech. 3, 19–24 (2017).