ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-05-43-53

УДК: 535.211:536.331

Surface-enhanced optical absorption and induced heating in tapered silicon nanoprobe

For Russian citation (Opticheskii Zhurnal):

Избасарова Э.А., Газизов А.Р., Харинцев С.С. Поверхностноусиленное оптическое поглощение и  индуцированный нагрев конического кремниевого нанозонда // Оптический журнал. 2024. Т. 91. № 5. С. 43–53. http://doi.org/10.17586/1023-5086-2024-91-05-43-53

 

Izbasarova E.A., Gazizov A.R., Kharintsev S.S. Surface-enhanced optical absorption and induced heating in tapered silicon nanoprobe [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 5. P. 43–53. http://doi.org/10.17586/1023-5086-2024-91-05-43-53

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. The relationship of the heating temperature with the mesoscopic shape of the silicon probe of an atomic force microscope under the influence of medium-intensity laser radiation (5 MW/cm2) and the presence of a rough metal substrate. Aim of study. Quantitative evaluation of a dependence of both the optical field enhancement and induced heating of the tip of a tapered silicon nanoprobe under laser irradiation on the radius of curvature and cone angle of the probe tip, the distance between it and the substrate, and the surface roughness parameter of the gold substrate. Method. The localization of the electromagnetic field in the gap between the vicinity of a silicon nanoantenna and an inhomogeneity on the surface of a gold substrate is simulated using finitedifference time-domain method. As a plasmonic surface, a thin gold coating (thickness up to 50 nm) on the glass substrate is used. Such a coating, due to the excitation of the surface plasmon resonance, enhances the absorption of light and increases the heating temperature of the silicon optical antenna. Main results. The influence of the polarization angle of incident laser radiation on the distribution of the electric field near the tip of the probe is studied. It is found that only the component of the incident light field strength along the direction of the probe axis is enhanced near the tip of the silicon cantilever. The influence of various parameters, including the radius of curvature, the cone angle of the tip of the silicon nanoantenna, the distance between the probe and the substrate, as well as the presence of roughness on the surface of the gold substrate, on the maximum temperature in the region of the tip of the silicon probe is investigated. The probe temperature was found to be decreasing with decreasing cone angle of the probe. Also, the temperature of the tip of the cantilever decreased as the cone angle of the tip of the probe increased. The temperature dependence on the radius of curvature of the tip of a silicon nanoantenna in the presence of a gold substrate was found. With an increase in the size of the roughness of the gold film, the temperature of the tip of the silicon antenna increases, gradually approaching the limit value. Practical significance. The results of the study can be used for optimal selection of the parameters of an experiment using a heated probe. Controlled heating of a silicon probe can be used to study phase transitions in various types of nanomaterials, as well as for local thermochemical nanocatalysis in order to create new structural materials with specified properties.

Keywords:

thermoplasmonics, optical heating, silicon cantilever, plasmon resonance

Acknowledgements:
this work was supported by the Russian Science Foundation, project № 19–12–00066

OCIS codes: 350.5340, 250.5403, 240.6680

References:

1. Бучарская А.Б., Маслякова Г.Н., Чехонацкая М.Л. и др. К вопросу об эффективности плазмонной фототермической терапии экспериментальных опухолей // Опт. и спектроск. 2020. Т. 128. № 6. С. 846–851. https://doi.org/10.21883/OS.2020.06.49419.34-20  Bucharskaya A., Maslyakova G., Chekhonatskaya M., et al. Efficiency of plasmonic photothermal therapy of experimental tumors // Opt. Spectrosc. 2020. V. 128. P. 849–854. https://doi.org/10.1134/S0030400X2006003X
2. Chernykh E.A., Kharintsev S.S. Sensing phase transitions in solids using thermoplasmonics // Bulletin of the RAS: Phys. 2022. V. 86. № Suppl 1. P. S37–S40. https://doi.org/10.3103/S1062873822700356
3. Okamoto S., Kikuchi N., Furuta M., et al. Microwave assisted magnetic recording technologies and related physics // J. Phys. D. Appl. Phys. 2015. V. 48. Art. № 353001. http://doi.org/10.1088/0022-3727/48/35/353001
4. Martirosyan D., Osychenko A., Zalessky A., et al. The use of a fluorescent dye for controlling the laser absorption in the femtosecond laser nanosurgery of cells // JETP Lett. 2023. P. 1–6. http://doi.org/10.1134/S0021364023600970
5. Zhang X., Zhou Y., Zheng H., et al. Reconfigurable metasurface for image processing // Nano Lett. 2021. V. 21. № 20. P. 8715–8722. https://doi.org/10.1021/acs. nanolett.1c02838
6. Aouassa M., Mitsai E., Syubaev S., et al. Temperaturefeedback direct laser reshaping of silicon nanostructures // Appl. Phys. Lett. 2017. V. 111. № 24. Art. № 243103. http://doi.org/10.1063/1.5007277
7. Харитонов А.В., Харинцев С.С. Оптическая запись двумерных температурных профилей в массивах TiON наноструктур // 10 Междунар. сем. по волоконным лазерам. 2022. С. 233–234. http://doi. org/10.31868/RFL.2022.233-234
 Kharitonov A.V., Kharintsev S.S. Optical printing of two-dimensional temperature profiles in arrays of TiON nanostructures // Russ. Fiber Lasers. 2022. V. 2. № 1. P. 98. http://doi.org/10.31868/2782-2354-RFL2022-2-1-98-99
8. Novotny L. Effective wavelength scaling for optical antennas // Phys. Rev. Lett. 2007. V. 98. № 26. Art. № 266802. https://doi.org/10.1103/PhysRevLett.98. 266802
9. Кучеренко М.Г., Налбандян В.М., Мушин Ф.Ю. и др. Влияние плазмонных оболочечных наночастиц на безызлучательный перенос энергии электронного возбуждения в донорно-акцепторной паре // Оптический журнал. 2022. Т. 89. № 11. С. 3–16. http://doi.org/10.17586/1023-5086-2022-89-11-03-16  Kucherenko M.G., Nalbandyan V.M., Mushin F.Yu., et al. Effect of plasmonic-shell nanoparticles on the nonradiative transfer of electron excitation energy in donor/acceptor pairs // J. Opt. Technol. 2022. V. 89. № 11. P. 642–650. https://doi.org/10.1364/JOT.89.000642
10. Замковец А.Д. Широкополосные плазмонные поглощающие нанокомпозиты // Оптический журнал. 2014. Т. 81. № 6. С. 78–83.  Zamkovets A.D. Broad-band plasmonic absorbing nanocomposites // J. Opt. Technol. 2014. V. 81. № 6. P. 361–364. https://doi.org/10.1364/JOT.81.000361
11. Chen X., Wang X. Microscale spatially resolved thermal response of Si nanotip to laser irradiation // J. Phys. Chem. C. 2011. V. 115. № 45. P. 22207–22216. https://doi.org/10.1021/jp2070979
12. Malkovskiy A.V., Malkovsky V.I., Kisliuk A.M., et al. Tip-induced heating in apertureless near-field optics // J. Raman. Spectrosc. 2009. V. 40. № 10. P. 1349–1354. http://doi.org/10.1002/jrs.2388
13. Jersch J., Dickmann K. Nanostructure fabrication using laser field enhancement in the near field of a scanning tunneling microscope tip // Appl. Phys. Lett. 1996. V. 68. № 6. P. 868. https://doi.org/10.1063/1.116527
14. Избасарова Э.А., Газизов А.Р., Харинцев С.С. Управление оптическим нагревом кремниевого зонда
с помощью ближнеполевого транспорта энергии локализованными поверхностными плазмонами // Известия РАН. Сер. физическая. 2023. Т. 87. № 12. С. 1788–1795. https://doi.org/10.31857/S0367676523703088  Izbasarova E.A., Gazizov A.R., Kharintsev S.S. Controlling the optical heating of a silicon probe using near-field energy transport carried by localized surface plasmons // Bulletin of the RAS: Phys. 2023. V. 87. № 12. P. 1862–1868. https://doi.org/10.1134/S106287382370418X
15. Palik E.D. Handbook of optical constants of solids. V. 3. N.Y.: Academic Press, 1998. 999 p.
16. Novotny L., Bian R.X., Xie X.S. Theory of nanometric optical tweezers // Phys. Rev. Lett. 1997. V. 79. № 4. P. 645. https://doi.org/10.1103/PhysRevLett.79.645
17. Royer P., Barchiesi D., Lerondel G., et al. Near-field optical patterning and structuring based on local-field enhancement at the extremity of a metal tip // Philos. Trans. Royal Soc. A. 2004. V. 362. № 1817. P. 821–842. https://doi.org/10.1098/rsta.2003.1349
18. Govorov A.O., Richardson H.H. Generating heat with metal nanoparticles // Nano Today. 2007. V. 2. № 1. P. 30–38. http://doi.org/10.1016/S1748-0132(07)70017-8
19. Bohn J.L., Nesbitt D.J., Gallagher A. Field enhancement in apertureless near-field scanning optical microscopy // JOSA A. 2011. V. 18. № 12. P. 2998–3006. https://doi.org/10.1364/JOSAA.18.002998
20. Baffou G., Quidant R., García de Abajo F.J. Nanoscale control of optical heating in complex plasmonic systems // ACS Nano. 2010. V. 4. № 2. P. 709–716. https://doi.org/10.1021/nn901144d
21. Baffou G., Quidant R. Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat // Laser Photonics Rev. 2013. V. 7. № 2. P. 171–187. https://doi.org/10.1002/lpor.201200003
22. Demming F., Jersch J., Dickmann K., et al. Calculation of the field enhancement on laser-illuminated scanning probe tips by the boundary element method // Appl. Physics-Section B-Lasers and Optics. 1998. V. 66. № 5. P. 593–598. https://doi.org/10.1103/PhysRevB.53.3654
23. Chen X., Wang X. Near-field thermal transport in a nanotip under laser irradiation // Nanotechnol. 2011. V. 22. № 7. Art. № 075204. https://doi.org/10.1088/0957-4484/22/7/075204
24. Kurpas V., Libenson M., Martsinovsky G. Laser heating of near-field tips // Ultramicroscopy. 1995. V. 61. № 1–4. P. 187–190. https://doi.org/10.1117/12.205920
25. Savage K.J., Hawkeye M.M., Esteban R., et al. Revealing the quantum regime in tunnelling plasmonics // Nature. 2012. V. 491. № 7425. P. 574–577. https://doi.org/10.1038/nature11653